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Abstract

Diffusion models, due to their outstanding generation capability, have been
recently introduced into probabilistic time series forecasting field to estimate
the future values of time series in a conditional generation manner, with
past observations serving as the condition to provide guidance to the denois-
ing process. In existing approaches, past observations are typically made to
apply guidance on a constant time scale throughout the entire process. How-
ever, we discover that there exists a scale transition phenomenon, suggesting
that information on different time scales needs to be highlighted at different
denoising stages. Furthermore, an effective guidance mechanism also requires
more efficient representation of past observations to contribute to future value
generation, which is challenged by the multi-scale entanglement inherent in
time series data. In this paper, we propose a novel model, named Multi-scAle
Guidance NETwork (MAGNET), to solve the problems above, which is
based on diffusion model framework and equipped with a uniquely designed
multi-scale guidance. With this guidance, MAGNET guides the denoising
process with consideration of the scale hierarchy required by different stages,
better represents historical information through multi-scale feature learning,
and makes the denoising more stable, all of which benefit the final forecast-
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ing. We test MAGNET on both synthetic and real-world datasets. The
main experimental results demonstrate the outperformance of MAGNET
with multi-scale guidance compared to existing approaches under different
evaluation criteria.

Keywords: Time Series Forecasting, Diffusion Models

1. Introduction

Time series is ubiquitous in the real world, which refers to any data
organized or collected in chronological order. How to forecast time series
accurately is a classic problem, and is also crucial to many domains, such as
economics [1], transportation [2, 3], environmental sciences [4], etc. While
most existing works focus on deterministic forecasting that generates a single
trajectory for future time points, probabilistic forecasting can provide a more
comprehensive view of the future situation of a time series by considering the
uncertainty of a time series and estimating the distributions for its future
values. This distribution-targeted modeling, arguably to be more reasonable
and powerful, is especially emphasized when it comes to issues like financial
risk management [5], healthcare [6], energy forecasting [7], etc.

As probabilistic forecasting can be taken as a conditional generation task
in the view of deep learning, generative models like VAEs (variational au-
toencoders) [8], GANs (generative adversarial networks) [9], and diffusion
models [10, 11], along with their variants, are continuously introduced into
this topic, indeed achieving some encouraging results. Among them, diffusion
models, characterized by a combination of diffusion and denoising processes,
have received considerable attention in recent years due to their outstanding
performances in computer vision. When applying them to time series fore-
casting, the research paradigm is to adopt the past observed sequence as a
condition to provide guidance to the denoising process for future sequence
generation.

Figure 1 illustrates the process of a time series sample being corrupted
to white noise during the diffusion process of diffusion models. It can be
observed that features of the time series on large time scales, such as long
trends over certain periods, are the first to degrade, followed by those on
small scales. This indicates a phenomenon that we refer to as scale transition,
where time series’ features on different time scales are selectively emphasized
at different stages of the inner processes of diffusion models. Thus, during
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the denoising process, if the condition can be made to adaptively provide
information on appropriate time scales based on the needs of different stages,
the entire process is expected to be more structured and efficient. To the best
of our knowledge, no existing diffusion-model-based approaches have ever
considered this phenomenon, where the past sequence typically functions by
applying guidance on a constant time scale regardless of the varying stages,
similar to the classifier [12] and classifier-free [13] guidance used in image
generation.

Diffusion Step Diffusion Step

Diffusion Step Diffusion Step

…

Diffusion Step

Real Sample

White Noise

Figure 1: An illustration showing how a time series
sample evolves during the diffusion process of
diffusion models. The sample is sliced from

Exchange[14] dataset.
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Figure 2: The schematic
diagram of multi-scale

guidance.

In addition, it should also be noted that multi-scale complexity is inher-
ent in time series data, where features on small time scales often correspond
to the intrinsic patterns, while features on large time scales are largely de-
termined by some exogenous factors. A typical example is the price of an
asset, where short-term trading behaviors of investors drive the short-term
movements of the price, while the price patterns over months or years are
often influenced by macroeconomic factors like interest environment, fiscal
policy, etc. This multi-scale complexity poses great challenges for time series
representation that is, however, rather important for an effective guidance
mechanism since forecasting heavily relies on the features or patterns ex-
tracted from the past observations, i.e., the conditions. In this regard, it
is required for a desirable guidance mechanism to disentangle and learn the
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multi-scale features from the past sequence, and to provide them to denoising
for better results.

Under the motivation discussed above, we propose the idea of multi-
scale guidance, whose schematic diagram is illustrated in Figure 2. With
this guidance, the past sequence is made to self-adjust to provide informa-
tion from local to global time scales to guide the denoising process for future
sequence generation, in response to the scale transition phenomenon. Based
on this, we further propose a novel model, named Multi-scAle Guidance
NETwork (MAGNET), to make probabilistic time series forecasting, which
possesses a diffusion-model-type architecture and is equipped with the uniquely
designed multi-scale guidance. Given the partitioned past and future se-
quences of a time series, MAGNET aims to learn a denoising process under
multi-scale guidance conditioned on the past sequence, to reverse a specified
diffusion process, in which the future sequence is corrupted to white noise ac-
cording to a variance schedule. The multi-scale guidance is implemented by
deriving representations of the past sequence on different time scales, specifi-
cally from local to global scales, through adaptive-sized windows and provid-
ing them to denoising step by step. With multi-scale guidance, MAGNET
fully considers the hierarchy implied by the scale transition phenomenon and
leverage it to guide the denoising process. Also, this guidance contributes to
more efficient representation of the past sequence by learning the multi-scale
features in a divide-and-conquer way: on one hand, MAGNET only needs to
focus on temporal features of a single time scale at each step of denoising,
greatly reducing the difficulty of feature learning; on the other hand, the fea-
ture learning is well guaranteed to be comprehensive since features on various
time scales are included as the window expands continuously until reaching
the global size. Furthermore, multi-scale guidance can also be thought of
as imposing a type of hierarchical prior constraint to MAGNET’s denoising
process, which ensures less instability in denoising and consequently reaches
higher accuracy. Here, the main contributions of our paper are listed as
follows.

• A novel time series forecasting model is proposed, named MAGNET,
which provides a diffusion-model-based framework to predict the dis-
tribution of a time series’ future trajectories based on its past observa-
tions.

• A unique mechanism is designed, named multi-scale guidance, to im-
pose an organized restriction on the denoising process. This mecha-
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nism enables MAGNET to provide information on varying time scales
as guidance to meet the requirements of different denoising stages, fa-
cilitates more effective multi-scale feature learning for better historical
information representation, and reduces the instability of the entire
denoising process, all of which contribute to high-quality forecasting
outcomes.

• Extensive experiments are conducted to test the proposed MAGNET,
of which the comparison results demonstrate the outperformance of
MAGNET over existing approaches under different evaluation metrics,
while others provide insight into MAGNET from aspects such as abla-
tion study, sensitivity analysis, etc.

The rest of the paper proceeds as follows. In Section 2, we introduce
existing works related to our topic. In Section 3, we formally discuss the
details of the proposed MAGNET. In Section 4, we describe the experimental
settings and present the experimental results with thorough analysis. Finally,
we conclude our work in Section 5.

2. Related Work

2.1. Deep-Learning-Based Time Series Forecasting

Deep-learning-based time series forecasting models can be grouped into
two categories, i.e., deterministic models and probabilistic models. Determin-
istic models predict the specific future values of the time series based on its
historical values. Typical works include RNN-based models [15, 16, 17, 18],
CNN-based models [19, 14, 20], Transformer-based models [21, 22, 23, 24],
etc. In contrast, probabilistic models predict the distribution of the future
values of the time series conditioned on past observations. Some works
[25, 26] assume the distribution (usually Gaussian) of the time series and
apply RNNs or CNNs to estimate its parameter, while others directly uti-
lize deep generative models such as VAEs [27, 28], GANs [29], and diffusion
models [30, 31], to generate all possible future trajectories of the time series.

2.2. Diffusion Models

Diffusion models refer to a family of deep generative models, which exhibit
state-of-the-art performances compared to traditional generative models like
VAEs [8], GANs [9] and flow-based models [32]. Diffusion models are char-
acterized by a diffusion process and a denoising process fixed to two Markov
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chains, which are used to complete the transformation between original sam-
ples and pure noises. Two typical architectures are usually adopted, which
are NCSNs (noise-conditioned score networks) [10] and DDPMs (denoising
diffusion probabilistic models) [11]. The applications of diffusion models in-
clude computer vision [33, 34, 35], graph generation [36, 37, 38], sequence
modeling [39, 30, 31], natural language processing [40, 41], etc.

3. MAGNET

In this section, we formally discuss the proposed MAGNET, whose overall
architecture is shown in Figure 3. Given a D-variate time series dataset S =
{Si = (X i,Y i)|i = 1, 2, ..., N}, where X i ∈ RT×D and Y i ∈ RL×D denote
the T -length past sequence and L-length future sequence of ith sample Si,
MAGNET aims to predict the distribution of any Y i based on the observed
X i. As is displayed, MAGNET is with a diffusion-model-based framework,
which makes it essentially a conditional distribution transformation between
standard Gaussian distribution and data distribution of {Y i|i = 1, 2, ..., N},
with {X i|i = 1, 2, ..., N} serving as the condition. Furthermore, MAGNET
is especially equipped with a multi-scale guidance mechanism to guide the
denoising process, aiming to achieve more organized and effective denoising
based on hierarchical multi-scale feature utilization. The model details will
be introduced in the following subsections. From now on, X and Y will be
used to denote past and future sequences, respectively, with superscript i
omitted, unless specifically emphasized.

3.1. Overall Framework

Mathematically, forecasting Y based on X is to model the conditional
distribution p(Y |X). With a diffusion-model-based framework, MAGNET
estimates p(Y |X) through a learnable Markov chain:

pθ(Y0,Y1, ...,YK |X) = p(YK)
K∏
k=1

pθ(Yk−1|Yk,X), (1)

p(YK) = N (YK ;0, I), (2)

where K denotes the total number of transition steps, N (·) denotes the Gaus-
sian distribution, and Y0 = Y . Once selecting a form for pθ(Yk−1|Yk,X),
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Figure 3: The architecture of the proposed MAGNET.

parameter θ can be learned by reversing another fixed Markov chain that
gradually adds noise to Y according to a variance schedule {β1, β2, ..., βK}:

q(Y1, ...,YK |Y0) =
K∏
k=1

q(Yk|Yk−1), (3)

q(Yk|Yk−1) = N (Yk;
√

1− βkYk−1, βkI). (4)

In diffusion model parlance, these two Markov chains are referred to as de-
noising process (reverse process) and diffusion process (forward process),
respectively. Obviously, the core component that determines the forecast-
ing performance of MAGNET is the transition function pθ(Yk−1|Yk,X). To
model it, two questions need to be thought through: first, how to let X
provide a condition that guides the whole denoising process to make it more
effective in the context of time series forecasting; second, how to accurately
model the complex correlations between X and Yk for step-wise conditional
generation. To address these two questions, MAGNET introduces a unique
multi-scale guidance, under which a conditional generation network
is designed to model pθ(Yk−1|Yk,X).
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3.2. Multi-Scale Guidance

The multi-scale guidance works by making the past sequence self-
adjust to initially provide local information, then steadily expand
the time scale, and ultimately provide the global information. We
argue that this guidance is better suited for time series forecasting because
of three reasons. First, we hierarchically extract patterns on different time
scales from the past sequence and provide them to the denoising process to
meet its varying needs at different stages. Second, we introduce a structured
scheme to achieve more efficient representation of past observations, where
complex multi-scale feature learning is divided into a collection of single-scale
feature learning, reducing the difficulty of feature learning at each denoising
step while also ensuring the integrity of feature utilization. Third, with such
an organized guidance, we impose a prior constraint to denoising process to
reduce its instability and make the forecasting more reliable.

3.2.1. Adaptive-Sized Window

The first step to implement the multi-scale guidance is to instantiate a
schedule for varying time scales. This is done through an adaptive-sized
window. Let wk denote the window size at denoising step k. It is calculated
by

wk =

⌈
wmax −

wmax − wmin
K − 1

(k − 1)

⌉
, (5)

where d·e denotes ceiling operation, wmin denotes the minimal window size,
and wmax denotes the maximal window size, which is set as the look-back
length T . In this way, as k ranges from K to 1, we can obtain a window
schedule {wK , wK−1, ..., w1}, whose value ranges accordingly from wK = wmin
to w1 = T , representing a time scale that expands continuously from local
scale to global scale with the denoising process.

3.2.2. Conditional Generation Network

With the window schedule, the next step of the multi-scale guidance is to
model the transition function pθ(Yk−1|Yk,X). To start with, pθ(Yk−1|Yk,X)
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is specified as

pθ(Yk−1|Yk,X) = N (Yk−1;µθ(Yk, k|X), σ2
kI), (6)

µθ(Yk, k|X) =

√
αk(1− αk−1)

1− αk
Yk

+

√
αk−1βk

1− αk
Yθ(Yk, k|X), (7)

where σ2
k = βk, αk = 1 − βk, αk =

∏k
i=1 αi, and Yθ(·) denotes a step-wise

denoising function. Here, a conditional generation network is introduced
to further parameterize Yθ(·), which is with a Transformer-type Encoder-
Decoder architecture, as is shown in Figure 3.

The role of the Encoder is to represent X at different denoising steps
based on the window schedule, to reflect features on different time scales.
Before the Encoder, an initial embedding is at first applied to X to map it
into RT×H space, where H denotes the hidden dimension. Let Xin ∈ RT×H

denote the input of the Encoder. To derive representation for denoising step
k, Xin is first evenly partitioned according to window size wk to generate a
patch sequence {X i

p ∈ Rwk×D|i = 1, 2, ..., dT/wke}. Note that Xin will be
padded with its last values if T is not divisible by wk. Then, the self-attention
is applied within each patch to update the representation. For instance, X i

p

is updated to X̃ i
p through M layers of calculations:

X̃ i
p,l = Fenc(softmax(

Qi
p,l ·Ki

p,l√
H

)V i
p,l),∀l ∈ {1, 2, ...,M} (8)

X i
p,1 = X i

p, X i
p,l+1 = X̃ i

p,l, X̃ i
p = X i

p,M+1, (9)

where the input of the lth layer, X i
p,l, is updated to X̃ i

p,l, Q
i
p,l, K

i
p,l and V i

p,l

denote the corresponding query, key and value of X i
p,l, and Fenc denotes all

other calculations such as residual connection, layer normalization, etc., fol-
lowing the paradigm of vanilla Transformer Encoder [42]. All these updated
representations are then concatenated to form Xk

rep, the representation of X
for denoising step k that is also the output of the Encoder, by

Xk
rep = (X̃1

p , X̃
2
p , ..., X̃

dT/wke
p ). (10)

With the derived Xk
rep, the Decoder subsequently takes it as input for

step-wise denoising, from step k to k − 1. Again, the aforementioned initial
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embedding is applied to Y before the Decoder to map it into RT×H space.
Let Yin ∈ RT×H denote the input of the Decoder. To distinguish different
denoising steps, Yin is at first updated through a step-targeted embedding to
incorporate step k’s information, where Yin is added with the Transformer
positional embedding [42] of step k. For simplicity of notations, we still
use Yin to denote the updated result. Afterwards, an M -layer denoising is
applied to Yin, each of which consists of a combination of self-attention and
cross-attention. Specifically, for any layer l, the input Yin,l is first updated
to Ỹin,l through a self-attention to integrate its own features, and then a
cross-attention is calculated between Ỹin,l and Xk

rep to model the correlations

between them and extract the information contained in Xk
rep to denoise Ỹin,l

to Yout,l that also serves as the input of next layer:

Ỹin,l = Fdec1(softmax(
QY,l ·KY,l√

H
)VY,l), (11)

Yout,l = Fdec2(softmax(
QỸ ,l ·KX,l√

H
)VX,l), (12)

where QY,l, KY,l and VY,l denote the corresponding query, key and value
of Yin,l, QỸ ,l denotes the query of Ỹin,l, KX,l and VX,l denote the key and

value of Xk
rep, and Fdec1 and Fdec2 together denote calculations following

the paradigm of vanilla Transformer Decoder [42]. The final output of the
Decoder is acquired after M rounds of the above calculation, which is further
mapped back to RT×D space through a linear layer to serve as the output of
Yθ(·).

Also, it is worth noting that the initial embedding that we use is of the
form

InitialEmbed(·) = Fpe(·) + Fve(·) + Ftse(·), (13)

where Fpe : RT×D → RT×H denotes the positional embedding adopting
Transformer positional embedding [42] to embed temporal position infor-
mation, Fve : RT×D → RT×H denotes the value embedding adopting a
convolution layer to achieve a shallow feature summarization of X, and
Ftse : RT×D → RT×H denotes the time stamp embedding to take into ac-
count the frequency of X. This technique is suggested and applied by many
Transformer-based time series forecasting models and one can refer to [21]
for more details.
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Algorithm 1 Training

1: repeat:
2: k ∼ U(1, 2, ..,K)
3: ε ∼ N (0, 1)
4: generate Yk according to 3 and 4
5: calculate Xk

rep according to 8, 9 and 10
6: calculate Yθ(Yk, k|X) according to 11 and 12
7: calculate loss L(θ) according to 14
8: take gradient step on ∇θL(θ)
9: until converged

Algorithm 2 Inference

1: YK ∼ N (YK ;0, I)
2: for k = K,K − 1, ..., 1 do
3: ε ∼ N (0, 1) if k > 1 else ε = 0
4: calculate Xk

rep according to 8, 9 and 10
5: calculate Yθ(Yk, k|X) according to 11 and 12
6: calculate µθ(Yk, k|X) according to 7
7: sample Yk−1 according to 6
8: end for
9: return Y0

3.3. Training and Inference

MAGNET is trained to minimize the following loss function:

L(θ) = EY0,k,ε[||Y0 − Yθ(Yk, k|X)||2], (14)

where ε ∼ N (0, 1). The training and inference algorithms are presented
in Algorithm 1 and Algorithm 2, respectively, where U(·) denotes uniform
distribution.

4. Experiments

4.1. Setup

4.1.1. Datasets

Six datasets are used including both synthetic and real-world data, all of
which are split into training, validation and test sets in the ratio 6:2:2. Also,
Z-score standardization is applied to preprocess the raw data.
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Synthetic Datasets As suggested in [43] and [28], we generate two
synthetic datasets, denoted as SD1 and SD2, by:

wt = a ·wt−1 + tanh(b ·wt−2)

+ sin(wt−3) +N (0, 0.5I), (15)

X = [w1,w2, ...,wT ] · F +N (0, 0.5I), (16)

0 6 wt,1,wt,2 6 1, t = 1, 2, 3, (17)

where a, b ∈ R, wt ∈ R2, F ∈ R2×n ∼ U [−1, 1]. For SD1, we set a = 0.7, b =
0.3, n = 10, T = 2000, while for SD2, we set a = 0.5, b = 0.5, n = 20, T =
2000.

Real-World Datasets Also, we select four real-world datasets. (1)
Exchange [14], collecting the daily exchange rates of eight countries including
Australia, British, Canada, Switzerland, China, Japan, New Zealand and
Singapore from 1990 to 2016. (2) & (3) ETTh1 and ETTh2 [21], containing
load and oil temperature data of 2 electricity transformers at 2 stations,
recorded hourly from 2016/07 to 2018/07. (4) Weather1, containing hourly
data for 30 meteorological indicators in 2023.

The statistics of these six datasets are summarized in Table 1.

Table 1: Statistics of the six datasets.

Dataset D-variate time steps frequency
SD1 10 2,000 1 day
SD2 20 2,000 1 day
Exchange 8 7,588 1 day
ETTh1 7 17,420 1 hour
ETTh2 7 17,420 1 hour
Weather 30 8,760 1 hour

4.1.2. Evaluation Metrics

Three metrics are selected to measure the performance of MAGNET,
which are MAE, MSE and CRPSsum. Among them, MAE and MSE assess the

1https://www.bgc-jena.mpg.de/wetter/
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accuracy of the mean values of predictions, while CRPSsum evaluates the ac-
curacy of entire distribution of predictions. Let Y = (Y1,Y2, ...,YT ) ∈ RT×D

denote the ground truth of aD-variate time series, and Ŷ = (Ŷ1, Ŷ2, ..., ŶT ) ∈
RT×D denote the corresponding forecast values. The definitions are as fol-
lows.

MAE : Mean Absolute Error. The MAE between Y and Ŷ is calculated
by

MAE =
1

T ×D

D∑
i=1

T∑
j=1

|Yi,j − Ŷi,j|. (18)

MSE : Mean Squared Error. The MSE between Y and Ŷ is calculated
by

MSE =
1

T ×D

D∑
i=1

T∑
j=1

|Yi,j − Ŷi,j|2. (19)

CRPS : Continuous Ranked Probability Score. The CRPS is used to
evaluate the alignment between the predicted CDF (cumulative distribution
function) F and the ground truth observation y, which is defined as

CRPS(F, y) =

∫
R
(F (x)− I(y 6 x))2 dx, (20)

where I(·) denotes the indicator function. In the context of time series fore-
casting, CRPS is typically used for univariate time series or single dimension
of a multivariate time series, and is calculated by applying 20 at each time
step and then averaging over the entire time horizon. To be more suitable for
multivariate time series, CRPS is extended to CRPSsum that is calculated
by first applying a summation over the variable dimension of size D to both
the predicted and ground truth values, and then comparing the values after
summation based on CRPS:

CRPSsum = Et[CRPS(Fsum(t),Ysum(t))], (21)

where Fsum(t) denotes the CDF of the time series after summation and Ysum
denotes the ground truth after summation. The CRPSsum is the metric used
in this paper.

For all these metrics, smaller values indicate better performance.
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4.1.3. Baselines

Seven baseline models are selected for comparison as follows.

• LSTM-MAF [44]: a conditioned-normalizing-flow-based model com-
bining Masked Autoregressive Flow with LSTM for probabilistic time
series forecasting;

• Transformer-MAF [44]: a conditioned-normalizing-flow-based model
combining Masked Autoregressive Flow with Transformer for proba-
bilistic time series forecasting;

• TimeGrad [30]: an RNN conditioned model with a diffusion-model-
type framework for probabilistic time series forecasting;

• D3VAE [28]: a VAE-based model with diffusion, denoise and disentan-
glement for probabilistic time series forecasting;

• Transformer [42]: the vanilla Transformer model;

• Informer [45]: a Transformer-based model characteristic of ProbSparse
self-attention, self-attention distilling operation and generative style
decoder for deterministic time series forecasting.

• Autoformer [46]: a Transformer-based model with inner decomposition
and auto-correlation for deterministic time series forecasting.

4.1.4. Implementation

The MAGNET is trained for 100 epochs with early stopping and opti-
mized by Adam [47] with a learning rate 0.0001 and batch size 512. For the
diffusion model framework of MAGNET, we set the total number of transi-
tion steps K = 1000, and select a linear variance schedule for {β1, β2, ..., βK},
starting with β1 = 0.0001 and ending with βK = 0.02. To accelerate the sam-
pling, we also adopt the second-order multi-step DPM-Solver++ [48, 49], in
which the total number of function evaluations is set as 20. For the condi-
tional generation network of MAGNET, the hidden dimension H is selected
from {16, 32, 64}, while the number of layers M is selected from {1, 2}. Also,
multi-head attention is applied for both Encoder and Decoder, with the same
number of heads in each, selected from {1, 2, 4}. Besides, the reversible in-
stance normalization is also applied, as suggested by [50]. The past sequence
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length T and future sequence length L are set as (T = 96, L = 48), re-
spectively. For all models, the training-validation-test pipeline is repeated 5
times, and a total of 100 samples are generated for evaluation for all prob-
abilistic models. The experiments relevant to neural network computations
are conducted on NVIDIA RTX A4000 16G GPUs.

4.2. Comparison

4.2.1. Quantitative Comparison

Table 2: Comparison between MAGNET and baselines in terms of MAE, MSE and
CRPSsum on six datasets. Note that only MAE and MSE are reported for Transformer,
Informer and Autoformer since they are used for deterministic forecasting with CRPSsum

not applicable to them. Each result is reported in the form of mean ± std.

SD1 SD2 Exchange ETTh1 ETTh2 Weather

LSTM-MAF

MAE 1.0517 ± 0.1108 0.8314 ± 0.0278 1.8396 ± 0.2051 1.7855 ± 0.0771 2.1063 ± 0.0675 0.8112 ± 0.0319

MSE 1.8162 ± 0.3628 1.2057 ± 0.1437 6.3278 ± 3.2645 5.3297 ± 0.7354 7.7105 ± 0.4911 1.5483 ± 0.1651

CRPSsum 0.2196 ± 0.0466 0.2915 ± 0.0159 0.3249 ± 0.0362 1.0905 ± 0.0561 0.7065 ± 0.0415 0.4533 ± 0.0221

Transformer-MAF

MAE 1.0278 ± 0.3030 0.8203 ± 0.0513 1.7644 ± 0.4416 1.5916 ± 0.0216 1.7433 ± 0.0533 0.8100 ± 0.0621

MSE 1.7741 ± 0.9905 1.1999 ± 0.2344 7.3289 ± 2.9138 4.6068 ± 0.5487 5.0713 ± 0.4241 1.6939 ± 0.3145

CRPSsum 0.1783 ± 0.0468 0.2802 ± 0.0162 0.2799 ± 0.1022 0.9695 ± 0.0424 0.6984 ± 0.0192 0.4612 ± 0.0789

TimeGrad

MAE 1.1660 ± 0.2460 0.7589 ± 0.0347 1.4303 ± 0.1532 0.7721 ± 0.0161 0.7327 ± 0.0517 0.4458 ± 0.0219

MSE 2.1166 ± 0.8653 0.9725 ± 0.0949 4.1865 ± 1.4192 1.1555 ± 0.0955 1.2204 ± 0.1568 0.5022 ± 0.0565

CRPSsum 0.0478 ± 0.0018 0.0585 ± 0.0030 0.1848 ± 0.0266 0.2214 ± 0.0151 0.1553 ± 0.0221 0.0858 ± 0.0054

D3VAE

MAE 1.3783 ± 0.0527 0.9650 ± 0.0383 1.4528 ± 0.0952 0.8786 ± 0.0250 0.9647 ± 0.0810 1.2113 ± 0.1787

MSE 2.6404 ± 0.1541 1.5102 ± 0.1183 3.4286 ± 0.4006 1.3216 ± 0.0877 1.5416 ± 0.2563 2.5055 ± 0.7658

CRPSsum 0.0737 ± 0.0094 0.0928 ± 0.0064 0.2032 ± 0.0260 0.2417 ± 0.0295 0.2352 ± 0.0279 0.1787 ± 0.0222

Transformer

MAE 0.9632 ± 0.0806 0.6302 ± 0.0094 0.6184 ± 0.0483 0.6534 ± 0.0282 0.4063 ± 0.0046 0.4255 ± 0.0136

MSE 1.3380 ± 0.1885 0.6957 ± 0.0210 0.7132 ± 0.1139 0.7634 ± 0.0452 0.3267 ± 0.0128 0.3624 ± 0.0250

Informer

MAE 1.0624 ± 0.0255 0.6369 ± 0.0062 0.9044 ± 0.0222 0.6309 ± 0.0176 0.4707 ± 0.0117 0.4766 ± 0.0182

MSE 1.6083 ± 0.0662 0.7177 ± 0.0184 1.3884 ± 0.0711 0.7582 ± 0.0123 0.4003 ± 0.0257 0.4377 ± 0.0291

Autoformer

MAE 0.7057 ± 0.0052 0.6330 ± 0.0134 0.2853 ± 0.0163 0.5387 ± 0.0151 0.3735 ± 0.0135 0.3482 ± 0.0039

MSE 0.8439 ± 0.0143 0.6890 ± 0.0340 0.1501 ± 0.0193 0.5853 ± 0.0544 0.2775 ± 0.0179 0.2828 ± 0.0032

MAGNET

MAE 0.6961 ± 0.0357 0.6296 ± 0.0116 0.2268 ± 0.0046 0.6075 ± 0.0186 0.3611 ± 0.0090 0.3091 ± 0.0099

MSE 0.8305 ± 0.0881 0.6766 ± 0.0307 0.0975 ± 0.0051 0.7462 ± 0.0634 0.2700 ± 0.0160 0.2681 ± 0.0090

CRPSsum 0.0471 ± 0.0022 0.0578 ± 0.0065 0.0448 ± 0.0020 0.2158 ± 0.0130 0.1224 ± 0.0063 0.0812 ± 0.0012
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The comparison results between MAGNET and baseline models in terms
of MAE, MSE and CRPSsum are listed in Table 2. As is shown, MAG-
NET achieves the best performance in almost all cases. The outperformance
of MAGNET over the four probabilistic forecasting models LSTM-MAF,
Transformer-MAF, TimeGrad and D3VAE is significant, whether with re-
gard to MAE and MSE or CRPSsum. This indicates that MAGNET can
provide more accurate point estimation for the future values of time series,
and also possesses greater distribution characterization capability. In partic-
ular, compared with TimeGrad and D3VAE, the two diffusion-model-based
models, MAGNET achieves an average percentage improvement of 40.69%
over TimeGrad and 56.09% over D3VAE on MAE, an average percentage im-
provement of 58.13% over TimeGrad and 72.70% over D3VAE on MSE, and
an average percentage improvement of 17.91% over TimeGrad and 44.16%
over D3VAE on CRPSsum. This result is quite encouraging as it in a sense
suggests that while all these three models are based on the diffusion model
architecture, MAGNET is able to achieve the best forecasting outcomes,
which may benefit from its more organized denoising process achieved by the
multi-scale guidance. In addition, we can also see that except for dataset
ETTh1, MAGNET outperforms the three deterministic forecasting models
Transformer, Informer and Autoformer on both MAE and MSE. Even on
ETTh1, MAGNET is the second best model, only inferior to Autoformer.

4.2.2. Statistical Test

The results discussed above showcase the superiority of MAGNET over
baseline models. Here, we further detect whether the superiority holds statis-
tical significance by conducting Friedman test and post-hoc Bonferroni-Dunn
test [51]. Briefly, Friedman test is used to examine whether there is significant
difference among the performances of a group of models, while Bonferroni-
Dunn test is then used to detect whether the target model (MAGNET, in
our case) outperforms other models after the Friedman test shows that the
difference indeed exists. Both these tests are based on the performance ranks
of models, and in our setting, each model is ranked according to its perfor-
mance in each (dataset, metric) pair. As such, we separately examine the
difference between MAGNET and probabilistic models, and the difference
from deterministic models, since CRPSsum is not applicable to deterministic
models.

The test results are presented in Figure 4, with the significance level of
α = 0.10. Taking Figure 4 (a) as an example, we can see that the null
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1.0000

I. Friedman Test, 𝝌2(4) = 52.8889, 𝑝 = 8.9904𝑒 − 11

II. Post-hoc: Bonferroni-Dunn Test

𝑪𝑫 = 1.1811
Average Rank 2.2778 3.6111

3.7222

4.3889

I. Friedman Test, 𝝌2(3) = 30.5000, 𝑝 = 1e-6

II. Post-hoc: Bonferroni-Dunn Test

𝑪𝑫 = 1.1216
Average Rank

1.1667 1.9167 3.0833

3.8333

(a)

(b)

Figure 4: The (a) and (b) correspond to the test results for the differences between
MAGNET and probabilistic models, and between MAGNET and deterministic models,

respectively.

hypothesis of Friedman test is rejected, indicating that all these five mod-
els perform significantly differently. Also, the Bonferroni-Dunn test further
suggests that MAGNET outperforms TimeGrad, D3VAE, Transformer-MAF
and LSTM-MAF significantly since their distances to MAGNET exceed the
CD (critical distance). A similar analysis also applies to the results in Fig-
ure 4(b), with the only exception that the distance between MAGNET and
Autoformer is within the CD. Even so, the average rank of MAGNET is
still smaller than that of Autoformer, just this advantage not statistically
significant under current test.

In general, these results further prove the superiority of MAGNET over
baselines from a statistical perspective.

4.2.3. Qualitative Comparison

To more intuitively demonstrate the forecasting capability of MAGNET,
we visualize MAGNET’s forecasting outcomes on datasets ETTh1 and Weather
in Figure 5, with only the results on the first three dimensions being dis-
played. As is shown, in each subfigure, the forecasting mean curve closely
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Figure 5: The visualization of MAGNET’s forecasting outcomes on ETTh1 and
Weather. The forecasting spans the entire test set and a portion of the non-test set data

is retained for ease of presentation.

aligns with the test set ground truth curve in shape, which proves the effective
point estimation capability of MAGNET from an intuitive visual perspective.
Besides, we can also find that the distribution estimation is desirable, with
the forecasting interval overall encompassing the test set ground truth curve
and with no obvious outliers.

4.3. Analysis

4.3.1. Ablation Study

Recall that the key design in MAGNET is the proposed multi-scale guid-
ance mechanism. Hence, we conduct ablation study here to more directly
examine the effectiveness of this mechanism. The experimental results are
presented in Table 3. In particular, we denote MAGNET without multi-scale
guidance as MAGNET w/o MSG.

As is exhibited, in terms of the mean, MAGNET achieves superior per-
formance over MAGNET w/o MSG measured by all evaluation metrics on all
datasets. The greatest improvement with respect to MAE and MSE both oc-
curs on ETTh1, with increases of 10.62% and 24.68%, respectively, while the
greatest improvement with respect to CRPSsum occurs on Exchange, with an
increase of 17.70%. This demonstrates the indispensability of the proposed
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Table 3: Model ablation, comparing the complete MAGNET and MAGNET w/o MSG,
in terms of MAE, MSE and CRPSsum on six datasets. Each result is reported in the

form of mean ± std.

SD1 SD2 Exchange ETTh1 ETTh2 Weather

MAGNET w/o MSG

MAE 0.7121 ± 0.0401 0.6386 ± 0.0138 0.2421 ± 0.0053 0.6797 ± 0.0475 0.3795 ± 0.0253 0.3251 ± 0.0112

MSE 0.8700 ± 0.0982 0.6974 ± 0.0339 0.1117 ± 0.0035 0.9908 ± 0.1762 0.3019 ± 0.0511 0.2950 ± 0.0122

CRPSsum 0.0485 ± 0.0027 0.0587 ± 0.0063 0.0544 ± 0.0033 0.2463 ± 0.0336 0.1302 ± 0.0078 0.0874 ± 0.0029

MAGNET

MAE 0.6961 ± 0.0357 0.6296 ± 0.0116 0.2268 ± 0.0046 0.6075 ± 0.0186 0.3611 ± 0.0090 0.3091 ± 0.0099

MSE 0.8305 ± 0.0881 0.6766 ± 0.0307 0.0975 ± 0.0051 0.7462 ± 0.0634 0.2700 ± 0.0160 0.2681 ± 0.0090

CRPSsum 0.0471 ± 0.0022 0.0578 ± 0.0065 0.0448 ± 0.0020 0.2158 ± 0.0130 0.1224 ± 0.0063 0.0812 ± 0.0012

multi-scale guidance in the denoising process to enhance the accuracy of fu-
ture value generation. Besides, it can also be observed that MAGNET is with
an overall smaller standard deviation on these three metrics than MAGNET
w/o MSG. This can be taken as a proof of the ability of multi-scale guidance
to facilitate a more stable denoising process, which stems from the hierar-
chical prior constraint it introduces. In general, all these results justify the
crucial role that multi-scale guidance plays in achieving effective forecasting
for MAGNET.

4.3.2. Sensitivity to Minimal Window Size

The minimal window length wmin plays a key role in MAGNET as it
controls the hierarchy of the denoising scheme. Note that when wmin reaches
the length of the past sequence T , MAGNET degenerates to MAGNET w/o
MSG, whose performance is discussed before. Here, we work further to ex-
plore how the performance of MAGNET changes with the variation of wmin.
The experimental results are exhibited in Figure 6.

As is shown, it is obvious that the optimal value of wmin varies in different
situations, with wmin = 6 for SD1, wmin = 48 for SD2 and Exchange, and
wmin = 24 for the rest. As different datasets have their own exclusive prop-
erties, the optimal value of wmin is totally dependent on the specific datasets
and hard to determine in advance. However, a rough rule can still be sum-
marized that, under most conditions, an excessively large or small value of
wmin is not recommended since only SD1 prefers small wmin and the perfor-
mance of MAGNET degrades significantly when wmin reaches 96 (the length
of the past sequence). This phenomenon can be understood from the view
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Figure 6: Sensitivity to minimal window size wmin.

of feature learning of the past observations, i.e., excessively small wmin leads
to excessive scale stratification, which may introduce noise, while excessively
large wmin results in less sufficient local feature learning, both of which can
hinder the efficient representation of past information and correspondingly
obstruct the forecasting.

4.3.3. Effectiveness under Different Data Complexities

Note that, in order to better represent the past observations to guide the
denoising, the proposed multi-scale guidance mechanism facilitates a way of
feature learning by hierarchically dividing and integrating the complex multi-
scale features of time series, which is therefore expected to be more effective
when the time series to be handled possess higher degree of complexity. To
investigate this, we apply two complexity indicators, detrended fluctuation
[52] and Hjorth complexity [53] to measure the complexity of our six datasets
and track how the outperformance of MAGNET over MAGNET w/o MSG
changes with respect to these indicators. Briefly, the detrended fluctuation
is often used to determine the self-affinity, especially long-term correlation,
of a time series. When the value is less than 1, greater values indicate
stronger long-term self-correlation, whereas when the value is greater than 1,
higher values indicate stronger non-stationarity. As for Hjorth complexity,
it measures the similarity of a time series with a pure sine wave, with higher
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values indicating greater complexity. The results are reported in Figure 7.

(a) (b)

Figure 7: Improvement of MAGNET relative to MAGNET w/o MSG under different
data complexities, measured by detrended fluctuation and Hjorth complexity.

As is illustrated in Figure 7(a), the threshold 1 splits the value curve of de-
trended fluctuation into two segments, which also categorizes the six datasets
into two groups, where Exchange, Weather and ETTh2, as one group, ex-
hibit more significant non-stationarity, while ETTh1, SD1 and SD2, as an-
other group, exhibit more significant long-term self-correlation. At the level
above 1, the improvement of MAGNET over MAGNET w/o MSG decreases
as the detrended fluctuation of the data decreases across Exchange, Weather
and ETTh2. This indicates that MAGNET performs better in environments
with stronger non-stationarity with the help of the multi-scale guidance. At
the level below 1, it also exhibits a downward trend as the detrended fluctu-
ation of data decreases, which is a strong proof that the multi-scale guidance
mechanism takes effect more significantly when data shows stronger long-
term self-correlation.

The similar situation also occurs in Figure 7(b), where the improvement
on the three metrics still shows a general downward trend as the Hjorth com-
plexity of the data decreases, although there exist exceptions like ETTh1.
Considering that Hjorth complexity only measures the complexity of time
series from a single viewpoint, it is normal for some datasets to exhibit ”in-
consistent” behaviors that may be caused by other factors. Also, if we fo-
cus on some specific datasets rather than all of them, this downward trend
becomes more significant. For instance, three gray dashed curves are high-
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lighted in Figure 7 to illustrate: the decrease in the improvement on CRPSsum

as Hjorth complexity decreases across Weather, ETTh2, SD1 and SD2; the
decrease in the improvement on MAE as Hjorth complexity decreases across
Exchange, ETTh2, SD1 and SD2; and the decrease in the improvement on
MSE as Hjorth complexity decreases across ETTh1, SD1 and SD2.

In summary, these results align with our expectations and validate the
effectiveness of multi-scale guidance in handling complexity from an experi-
mental perspective.

5. Conclusion

In this paper, we introduce a novel model, MAGNET, for probabilistic
time series forecasting. MAGNET possess a diffusion-model-based frame-
work and is specifically equipped with a multi-scale guidance mechanism to
impose hierarchical guidance to the denoising. With this guidance, MAG-
NET is effective in providing guidance on different time scales to meet the de-
mands of varying denoising stages, representing historical information through
step-by-step multi-scale feature learning and reducing the instability of de-
noising outcomes, all of which benefit the forecasting target. MAGNET is
tested on six datasets including both synthetic and real-world datasets. The
experimental results justify the superior performance of MAGNET over ex-
isting baseline models with respect to both point estimation measured by
MAE and MSE, as well as distribution prediction measured by CRPSsum.
Other experiments are also conducted for further analysis such as ablation
study, sensitivity analysis, and so on.

Future work will mainly concentrate on two aspects to further extend
the model. First, some real-world multivariate time series data exist in the
form of dynamic graphs, showing more complex variate correlation. In this
regard, MAGNET can be further extended to consider this property. A
promising way is to combine MAGNET with graph learning methods such
as graph neural networks. Also, MAGNET adopts a linear window schedule
for multi-scale guidance, which can be further improved to provide more
sophisticated guidance, especially when data exhibits stronger complexity.
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